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Abstract
Temperature and structural disorder can have a strong influence on the stability
of solitons excited in protein molecules. This problem has been studied in
depth with an improved model, using numerical simulation and the Runge–
Kutta method, for biological temperatures. The results obtained show that the
soliton is thermally stable in the region of biological temperatures, 300 K <

T < 320 K, and is very robust against structural disorder, including substantial
disorder in the sequence of masses of the amino acids and fluctuations of
the spring constant, coupling constant, dipole–dipole interaction constant and
ground state energy, due to its larger binding energy which can suppress the
destructive effect of the above types of disorder and thermal perturbation.
Therefore this soliton is a possible carrier for bio-energy transport in protein
molecules. However, very strong structural disorder can also destroy the
stability of this soliton.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

As is known, many biological processes or phenomena, for example, muscle contraction, DNA
reduplication and neuroelectric pulse transfer on the neurolemma and work of the calcium
pump and sodium pump, are associated with bio-energy transport through protein molecules,
where the energy is released by hydrolysis of adenosine triphosphate (ATP). Thus, studying
the mechanism and features of the bio-energy transport has important meaning in life sciences.
However, understanding the mechanism of the bio-energy transport is a long-standing problem
that remains of great interest. Davydov thinks that this transport in the protein molecules could
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Figure 1. Schematic picture of a hydrogen bonded channel (spine) in a protein helix (indicated by
a backbone, perpendicular to the spine).

be carried out by a soliton mechanism [1]. Following Davydov’s idea [1], the energy can
cause stretching vibration of the C=O mode (amide-I) in a polypeptide chains as shown in
figure 1; thus coupling between the amide-I vibrational quantum (exciton) and acoustic phonon
(molecular displacements) in the lattice occurs. Through the coupling, nonlinear interaction
appearing in the motion of the excitons leads to self-trapping of the exciton; thus the exciton
becomes like a soliton [1], which, plus the deformational lattice, can move over macroscopic
distances along the molecular chains retaining the wave shape, energy and momentum and
other properties of quasiparticles. This is just the Davydov model for the bio-energy transport
which was proposed first by Davydov in the 1970s [1].

Davydov’s idea yields a compelling picture for the mechanism of bio-energy transport in
the protein molecules and consequently has been the subject of a large number of works [2–16].
Problems related to the Davydov model, including the foundation and accuracy of the theory,
the quantum and classical properties, and the thermal stability and lifetimes of the Davydov
soliton, have been extensively studied [2–16]. However, considerable controversy has arisen in
recent years over whether the Davydov soliton is sufficiently stable in the region of biological
temperature to provide a viable explanation for the bio-energy transport. Many numerical
simulations [8–10] have been based essentially on classical equations of motion and are subject
to the criticism that they are likely to yield unreliable estimates for the stability of the soliton
since the dynamics of the soliton is not being determined by the Schrödinger equation [6].
For the thermal equilibrium properties of the Davydov soliton there is quantum Monte Carlo
simulation [12]. In the simulation, correlations characteristic of solitonlike quasiparticles
occur only at low temperatures, about T < 10 K, for widely accepted parameter values.
This is consistent at a qualitative level with Cottingham et al’s result [13]. The latter is a
straightforward quantum mechanical perturbation calculation, in which the lifetime of the
Davydov soliton is too small (about 10−12–10−13 s) to be useful in the biological processes.
This shows clearly that the Davydov model is not a true wavefunction of the systems. Therefore,
it is necessary to reform Davydov’s wavefunction. Scientists had thought that the soliton with a
multiquantum state (n > 2), for example, Brown et al’s coherent state [3], and Kerr et al’s [11]
and Schweitzer et al’s [13] multiquantum state, and Cruzeiro-Hansson’s [9] and Förner’s [10]
two-quantum state, and so on, would be thermally stable in the region of biological temperature,
and could provide a realistic mechanism for the bio-energy transport in the protein molecules.
However, the assumption of the standard coherent state is unsuitable or impossible for the
protein molecules because the particles in this state are innumerable and one could not retain
conservation of the number of particles in the system. The assumption of a multiquantum state
(n > 2) along with a coherent state is also inconsistent with the fact that the energy released
in ATP hydrolysis (about 0.43 eV) can only excite two quanta of amide-I vibration.

On the basis of the work of Cruzeiro-Hansson and Förner, and so on, we improve and
extend the Davydov model through simultaneous changes of the Hamiltonian and wavefunction
of the systems. A new coupling interaction between the acoustic phonon and amide-I
vibrational modes was added in the original Davydov Hamiltonian, and the one-quantum
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(exciton) state in the Davydov wavefunction was replaced by a quasi-coherent two-quantum
state. In the improved model the wavefunction and Hamiltonian of the protein molecules were,
respectively, represented by [17]
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where B†
n and Bn are boson creation and annihilation operators for the exciton, |0〉ex and

|0〉ph are the ground states of the exciton and phonon, respectively. un and Pn are the
displacement and momentum operators of the lattice oscillator in site n, respectively, the an(t),
βn(t) = 〈�(t)|un|�(t)〉 and πn(t) = 〈�(t)|Pn |�(t)〉 are three sites of unknown functions, λ

is a normalization constant and is chosen here as 1. ε0 = h̄ω0 = 1665 cm−1 = 0.2035 eV
is the excitation energy of an isolated amide-I oscillator or energy of the exciton (the C=O
stretching mode). The present nonlinear coupling constants are χ1 and χ2; they represent the
modulations of the one-site energy and resonant (or dipole–dipole) interaction energy for the
excitons caused by the molecular displacements, respectively. M is the mass of an amino acid
molecule, W is the elasticity constant of the protein. J is the dipole–dipole interaction energy
for neighbouring sites. Usually for all parameters in equations (1) and (2) site independent
mean values are used. The average value of the dipole–dipole coupling between neighbouring
amide-I oscillators is J̄ = 0.967 meV. The average spring constant of the hydrogen bonds
is taken usually to be W̄ = 13 N m−1. The average mass M̄ is taken as that of myosine
(M̄ = 114 mp; mp is a proton mass). For χ̄1 the experimental value is 62 pN; χ̄2 = 10–15 pN.

The Hamiltonian and wavefunction in equations (1) and (2) in the improved model are
different from Davydov’s. There is new interaction term,

∑
n χ2(un+1−un)(B†

n+1 Bn + B†
n Bn+1),

in the improved Hamiltonian. Thus the Hamiltonian now has better symmetry and can
better represent the features of mutual correlations of the collective excitations in the protein
molecules. The present wavefunction of the exciton in equation (1) is not an excitation state of
a single particle, but a coherent state, accurately speaking, a quasi-coherent state. It retains only
three terms of the expansion of a standard coherent state. Thus it can approximately represent
a standard coherent state, if the an(t) is small, for example, |an(t)| � 1, which is also justified
mathematically, i.e., it can be viewed as an effective truncation of a standard coherent state.
Therefore we can refer to the |a(t)〉 as a quasi-coherent state. However, it is not an eigenstate
of the number operator, N̂ = ∑

n B†
n Bn , but a coherent superposition of the exciton state

with two quanta and the ground state of the exciton. In this state the number of quanta is not
indeterminate. We can find out through the expectation value of the number operator N̂ in
this state that the number of excitons is N = 〈a(t)|N̂ |a(t)〉 = ∑

n〈a(t)|B†
n Bn|a(t)〉 = 2.

Therefore, it contains really two excitons. (We point out that it is very erroneous that
equation (2) contains three quanta [9], which was obtained from adding three eigenvalues,
zero, one and two, for N̂ corresponding to each term in equation (2). This calculation violates
basic principles of quantum mechanics and is completely mistaken. We can only use the
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Table 1. Comparison of features of the solitons, between our model and the Davydov model.

Nonlinear Binding Lifetime Critical Number of amino
interaction, Width energy at 300 K temperature acid travelled by

Model G (10−21 J) Amplitude (10−10 m) (10−21 J) (s) (K) soliton in lifetime

Our model 3.8 1.72 4.95 −7.8 10−9–10−10 320 Several hundred
Davydov 1.18 0.974 14.88 −0.188 10−12–10−13 <200 Less than 10
model

above way to get the number of particles contained in equation (2) because this state is not
the eigenstate of the number operator N̂ .) Hence, we can say that the improved model is
completely different from the Davydov model. Thus, the equation of motion of the soliton
and its properties in the improved model are also different from those in the Davydov model.
The distinction of their features is shown in table 1 [16]. From table 1 we know that our
new model can deal with the shortcomings of the Davydov model [1]; the ‘new’ soliton in
the improved model is thermal stable, and has long enough lifetime at biological temperature
300 K; thus it can play an important role in biological processes. We can suppose that this
model could resolve the controversy on the thermal stability and lifetime of the soliton in the
protein molecules; thus the new soliton is possibly an exact carrier of bio-energy transport for
the protein molecules.

However, the above results were obtained in an analytic way where the protein molecules
were thought to be periodic systems, all physical parameters of the protein molecules were
used at their average values and some approximations, including long wave approximation and
continuum approximation, were used in the calculation. In practice, the biological proteins
consist of 20 different amino acid residues with molecular weights between 75mp (glycine)
and 204mp (tryptophan) which correspond to variation between 0.67M̄ and 1.80M̄; thus they
are not periodic, but aperiodic and nonuniform systems, in which there is structural disorder.
Careri et al’s experiments [19] appear to indicate that even relatively small amounts of disorder
in amorphous film of acetanilide (ACN), a protein-like crystal (i.e., the molecular structure of
acetanilide crystal is quite analogous to that of alpha-helix protein), is enough to destroy the
spectral signature of a ‘soliton’. In such a case it is very much necessary to study influences
of the structural disorders on the solitons at the biological temperature. In this paper we will
study the states and features of the new soliton in nonuniform and aperiodic proteins using
numerical simulation and the Runge–Kutta method [18]. We will see that the soliton is still
stable at the biological temperature 300 K and robust against these structural disorders of the
protein molecules. In this paper we state the calculated method in section 2; the results and
discussion are given in section 3. In section 4 we give the conclusions of this investigation.

2. Calculation method

Utilizing equations (1) and (2) and the equations

ih̄
∂

∂ t
|�(t)〉 = H |�|(t)〉

and

ih̄
∂

∂ t
〈|�(t)|un|�(t)〉 = 〈�(t)|[un, H ]|�(t)〉

ih̄
∂

∂ t
〈�(t)|Pn |�(t) = 〈�(t)|[Pn, H ]|�(t)〉
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we can obtain

ih̄ȧn(t) = ε0an(t) − J [an+1(t) + an−1(t)] + χ1[qn+1(t) − qn−1(t)]an(t)

+ χ2[qn+1(t) − qn(t)][an+1(t) + an−1(t)]

+ 5
2
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2
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qm(t)πm(t) − π̇m(t)q̇m(t)]

}
an(t) (3)

Mq̈n(t) = W [qn+1(t) − 2qn(t) + qn−1(t)] + 2χ1[|an+1|2 − |an−1|2]

+ 2χ2{a∗
n(t)[an+1(t) − an−1(t)] + an(t)[a∗

n+1(t) − a∗
n−1(t)]} (4)

and using the transformation an(t) → an exp[iε0t/h] we can eliminate the term of ε0an(t) in
equation (3).

The above equations can determine states and behaviours of the new soliton [18]. We
simulate numerically the solutions of the above equations by the fourth-order Runge–Kutta
method. In the calculation, the system of units eV for energy,Å for length and ps for time proved
to be suitable for the numerical solutions of equations (3) and (4). In the numerical simulation
by the fourth-order Runge–Kutta method [18], we require that the following conditions must
be satisfied:

(1) the energy of the soliton, E = 〈�(t)|H |�(t)〉, must remain constant up to (0.0012%),
i.e., the energy must be conservative at any position and time;

(2) in motion of the soliton, the probability of the soliton must be normalized at any
time or, so to speak, the number of particles in the system must be conservative, i.e.,∑

n |an(0)|2 = ∑
n |an(t)|2 = 1;

(3) the energy of the soliton is real—its imaginary part must be approach zero to an accuracy
of 0.001 feV, and the norm is conserved to 0.3 ppm (parts per million).

An initial excitation is required in this calculation; it is chosen as an(0) = A sech[(n −
n0)(χ1 + χ2)

2/4J W ] (where A is the normalization constant) at the size n; for the lattice,
qn(0) = πn(0) = 0 are applied. The molecular chain is fixed, N is chosen to be N = 50
and a time step size of 0.0195 is used in the simulations. The total numerical simulation is
performed by a data parallel algorithm using MATLAB language.

3. Calculation results and discussion

3.1. Influence of structural disorder on the new soliton

Applying the above equations of motion and the fourth-orderRunge–Kutta method [18] we can
numerically calculate their solutions related the time and |an|2, where |an|2 is the probability
that the soliton occurred at the j thamino acid molecule. Thus we can plot the state of the soliton
in the time and place in nonuniform and aperiodic protein molecules with different structural
disorders. If the above average values of all physical parameters are used, the numerical result
for the uniform protein molecular chain is as first shown in figure 2. From this figure we
see that the amplitude of the solution of the above equations is constant; therefore it is a real
soliton. Thus we can confirm that the above equations have exactly the soliton solution.

When the effects of the ‘structural disorder’ of the protein molecules are taken into account
the states and features of the new soliton will be changed. In such a case we should use a random
number generator to produce or represent the random sequences of the different parameters
in the protein molecules. We first study influences of disorder of mass sequences on the state
of the now soliton. In this case we consider the disorder of mass sequences in which the
mass of the amino acid molecule at a certain site is varied relative to the average mass of
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Figure 2. The state of the new soliton in the free case.
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Figure 3. The state of the new soliton at M49 = 100M̄ (a) and M49 = 100 000M̄ (b).

M̄ = 114mp = (1.17–1.91) × 10−25 kg, but other masses remain equal to M̄ . In figure 3
we show the features of the new solitons, when the mass of the amino acid residues at site 49
increases to M49 = 100M̄ and 100 000M̄ , respectively. Surprisingly, up to quite large masses
of 100M̄ no obvious perturbations and decays appear in the motion of the new soliton; the
motion of the new soliton does not change, a quite small fraction of the sound energy is trapped
at the impurity and the major fraction is scattered back, and these fractions do not increases
up to M49 = 100 000M̄ . From these results one can conclude that an impurity at one site,
which may also be some other molecule bound to the protein at this site (like reactive centres,
e.g. haeme groups), does not disturb the soliton at all.

On the other hand, if the random series of masses are distributed over the whole molecular
chain, then the variations of the new soliton will differ from the above case. In such a case
we should introduce a small parameter αk to denote the mass at each point in the molecular
chain, i.e., Mk = αk M̄; here the αk were determined by a random number generator with
equal probability within a prescribed interval. The result shows that the aperiodicity due to
the smaller intervals for αk , for example, 0.67 � αk � 400, does not significantly affect the
stability of the new soliton, but in the case of large intervals such as 0.67 � αk � 700, the
vibrational energy is dispersed. These results are shown in figure 4. As is known, the variation
of masses of the natural amino acids in the protein molecules is 0.67 � αk � 1.80. Obviously,
the interval, 0.67 � αk � 400, over which motion of the new soliton is unperturbed is evidently
larger than 0.67 � αk � 1.80. Otherwise, there are also some small elongations perpendicular
to the protein molecular backbone in the case forming the soliton, but the influence of mass
disorder is very small. Therefore we can conclude that the disorder determined by the different
masses of the amino acid molecules in the biological proteins cannot destroy the stability of
the new soliton, which is quite robust against the mass disorder effects in the improved model.

We also simulate numerically the influence of change of force constant W , arising from
the structural disorder, on the stability of the new soliton. Up to a random variation of ±45%W̄
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Figure 4. The state of the new soliton at 0.67 < αK < 400 (a) and 0.67 < αK < 700 (b).
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Figure 5. The state of the new soliton at the changes 
W = ±45%W̄ (a) and 
W = ±55%W̄ (b).

(a) (b)

Figure 6. The state of the new soliton at change 
J = ±9% J̄ (a) and 
J = ±15% J̄ (b).

we find no change in the dynamics of the new soliton. For ±55%W̄ , the soliton velocity is
only somewhat diminished, when compared with the case of W̄ . The results are as shown in
figure 5. Finally, for ±70%W̄ , the new soliton disperses slowly and propagation is irregular.

If in addition W is aperiodic, the new soliton is stable up to ±35%W̄ , while at 45%W̄ a
slowly dispersive phenomenon for the soliton occurs.

Studies show that the new soliton is more sensitive to the variation in J caused by the
disorder of structure, when compared with the other parameters. In fact, for variation in J
alone the soliton is stable up to 9% J̄ , but it disperses at 
J = ±15% J̄ , as shown in figure 6.

If (χ1 + χ2) alone or together are aperiodic with the natural mass variation, arising from
the disorder of the structure, then the states of the new soliton will be changed. When the
(χ1 + χ2) can be varied up to ±25% (χ̄1 + χ̄2) and in the cases of 0.67M̄ � M < 2M̄ and

(χ1 + χ2) = 25%(χ̄1 + χ̄2), the new solitons are stable; the results are shown in figure 7. If
the fluctuation increases further, the soliton disperses.
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Figure 7. The state of the new soliton at change of 
(χ1 + χ2) = ±25%(χ̄1 + χ̄2) (a), and
0.67M̄ < M < 2M̄ and 
(χ1 + χ2) = ±25%(χ̄1 + χ̄2) (b).
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(c)

Figure 8. The state of the new soliton at 
ε0 = εδ, ε = 0.5 meV (a), 
ε0 = ε|βn |,
ε = 1 meV, |βn | � 0.5 (b) and 
W = ±10%W̄ , 
J = ±5% J̄ , 
(χ1 + χ2) = ±5%(χ̄1 + χ̄2),
0.67M̄ < M < 2M̄ , 
ε0 = ε|βn |, ε = 0.4 meV |βn | � 0.5 (c).

In the case of change of the ground state energy 
ε0, caused by different amino acid side
groups and corresponding local geometric distortions due to the impurities imported, we found
that for an isolated impurity in the middle of the chain, for which the change of the energy
caused is denoted by 
ε0 = εδn, the new soliton can pass the impurity only if ε < 1 meV. In
other cases it is reflected or dispersed. In the case of a random sequence, which is denoted by

ε0 = ε|βn|, where |βn| is a random number generator, only for ε < 1 meV and |βn| � 0.5
can the new soliton pass the chain. These results are shown in figures 8(a) and (b). For higher
values of ε the new soliton disperses. Finally, if the five parameters in this model are all
randomly varied the maximal possible disorders that would still occur in the soliton motion
are 
W = ±10%W̄ , 
J = ±5% J̄ , 
(χ1 + χ2) = ±5%(χ̄1 + χ̄2), 0.67M̄ < M < 2M̄ ,
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ε = 0.4 meV (
ε0 = ε|βn|) as shown in figure 8(c). This shows that the new soliton is also
very robust against these structural disorders.

The actual degree of disorder in protein molecules remains unknown up to now. However,
it is well known that the protein molecules show bio-self-organization with high order. The
order distribution of the amino acid molecules in the proteins is a necessary condition for
performing the biological functions of the proteins. Any large disorder means degeneration
of structure and disappearance of the functions of the protein molecules, and disease of the
living bodies will occur—not problems that this paper discusses. Meanwhile, the natural
amino acids are not free particles, but are covalently bound in the main polypeptide chains of
the proteins. Therefore, discussions of the influences of large disorder of all parameters on
the stability of the soliton are not realistic and correct at all for normally biological protein
molecules. A more realistic and correct problem for the disorder is studying the influences of
the disorder in effective mass and small natural disorders of all parameters, arising from some
changes of geometry of the main chain due to the side groups, on the stability of the soliton
in the biological proteins. However, the above results obtained show clearly that the larger
disorders of effective masses and other physical parameters cannot destroy the stability of the
new soliton. Hence, it is not possible at all for it to occur in the protein molecules the case
Careri et al spoke of, in which the small amounts of disorder can destroy the spectral signature
of a ‘soliton’ in amorphous films of acetanilide [19]. Thus, we can conclude that the influence
of the natural structural disorders on the new soliton is very small; the new soliton is very
robust against normal or general structural disorders that appeared in the protein molecules.

3.2. Influence of the heat bath on the new soliton

Since the bio-protein molecules in the living systems work always at the biological temperature
300 K, the influences of the temperature on the new solitons at 300 K should be considered
and studied in a realistic model of the bio-energy transport in the protein molecules. Thus we
now turn to studying the influence of temperature of the heat bath on properties of the new
soliton in the proteins by numerical simulation and the fourth-order Runge–Kutta method. In
such a case we assume that the proteins are contacted with a heat bath with temperature of
300 K. As is known, the temperature effect on the soliton was previously studied in many
models in the protein molecules [1, 4, 8–14, 20, 21]. Lomdahl and Kerr’s model [11] exhibits
the first instability of the Davydov soliton at 300 K, which results in questioning the validity
and applicability of the Davydov model. Hence we here adopt Lomdahl and Kerr’s way of
calculating the temperature effect on the new soliton. In accordance with their approach [11],
the decay term M�q̇n and random thermal noise term, Fn(t), resulting from the temperature
and damping of the medium, were added in the displacement equation of the amino acids,
equation (4); thus it now becomes

Mq̈n(t) = W [qnt1(t) − 2qn(t) + qn−1(t)] + 2χ1[|an+1|2 − |an−1|2] + 2χ2{a∗
n(t)[an+1(t)

− an−1(t)] + an(t)[a
∗
n+1(t) − a∗

n−1(t)]} − M�q̇n + Fn(t) (5)

where � is the dissipation or damping coefficient of vibration of amino acids; the correlation
function of the random thermal noise force can be, in general, represented by

〈F(x, t)F(0, 0)〉 = 2M KB Jδ(x)δ(t)/r0

where r0 is the lattice constant. � should be now represented by an inverse number from the
time constant of the heat bath; we here choose � = 0.3 × 108 s−1. Since time discretization
affects the properties of the Langevin forces in the numerical simulations, we here use an
ensemble of Gaussian forces Fn with variance equal to σ = 2M KBT�/τ1, where τ1 is the



622 X-F Pang et al

Figure 9. The state of the new soliton at 300 K through the time of 300 ps.

Figure 10. The state of the new soliton at 310 K.

time constant. This means that deviation of the random thermal noise satisfies the normal
distribution with criterion of deviation

N(Fn) = 1√
2πσ

exp[−F2
n /2σ ],

where

Fn(t) = √
σ

L∑
r=1

[Xnr(t) − 1
2 ],

and has zero expectation value. We here assume L = 12; the random number Xnr(t) is in the
region of (0 � Xnr � 1). Therefore the deviation of [Xnr(t) − 1

2 ] is 1/12; then the criterion of
deviation of Fn(t) is

√
σ . Thus the domain of random thermal noise force is |Fn(t)| � 6

√
σ .

This choice of Gaussian width is compatible with the fluctuation dissipation theorem and time
discretization [22].

According to the above explicit representation of the random thermal noise term, Fn(t), we
can find the numerical solution of equations (3) and (5) with the above decay effect and random
noise force by the fourth-order Runge–Kutta method [18] at the biological temperatures. We
first give the state of the new soliton in the cases of long times of 300 ps at 300 K in the uniform
protein molecules, which is shown in figure 9. From this figure we see that there is still soliton
motion, which is also very stable, in this case. This shows that the nonlinear coupling between
the lattice and oscillators is still able to stabilize the soliton, despite there being large lattice
energy fluctuations in such a case due to the heat bath. The result agrees with the analytic
considerations in our previous studies [17]. The above behaviour of the soliton can still occur
at higher temperature of 310 K as shown in figure 10. However, at the higher temperature of
320 K, the new soliton starts to disperse which is shown in figure 11.
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Figure 11. The state of the new soliton at 320 K.

Figure 12. The state of the new soliton under influences of disorder at 0.67M̄ < M25 < 2M̄ ,

J = ±5% J̄ , 
W = ±10%W̄ , 
(χ1 + χ2) = ±5%(χ1 + χ2), 
ε0 = ε|βn |, ε = 0.41 meV,
|βn | < 1, for T = 300 K.

We see from figure 9 that the soliton remains invariable in amplitude and shape in the
moving case of the long time of 300 ps. This shows that the lifetime of the new soliton is, at least,
300 ps. What does the lifetime of τ = 300 ps mean? As is mentioned above, the characteristic
unit of time, τ0, in this model denotes the time for moving over one lattice space at the sound
speed, v0, in the molecular chain. Since one assumes that v < v0, the soliton will not travel the
length of the chain unless τ/τ0 is large compared with L/r0. Because L/r0 = 100, τ/τ0 = 500
is a common and reasonable criterion for the soliton to be a possible mechanism of bio-energy
transport in the proteins. Then the lifetime of τ = 300 ps corresponds to τ/τ0 > 1000 > 500.
Thus this means that the new soliton is very stable in long time transport at 300 K.

From the above results we see clearly that the new soliton in the improved model is
thermally stable at 300 K; the lifetime of the new soliton is, at least, about 300 ps. The critical
temperature of the new soliton is about 320 K. These conclusions agree with that of analytic
results as stable 1 for the improved model [16].

However, the structural nonuniformities of the protein molecules are not considered in the
above calculation. Thus we should study further the influences of the structural nonuniformity
on the new soliton at the biological temperatures of 300–310 K. According to above we
introduce random number generators, αk and |βn|, to designate the random features of the mass
sequences and ground state energy in the nonuniformity proteins [10, 17], respectively. When
the disorder of the mass sequence is in the region of 0.67M̄ < Mk < 2M̄ , or 0.67 < αk < 2,
where Mk = αk M̄ , and fluctuations of (χ1 + χ2), J, W and ground state energy ε0 are about

(χ1 + χ2) = ±5%(χ1 + χ2), 
J = ±5% J̄ , 
W = ±10%W̄ , 
ε0 = ε|βn|, ε = 0.4 meV,
|βn| � 0.5, respectively, the states of the new soliton obtained at T = 300 K are as shown
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Figure 13. The state of the Davydov soliton at 30 K.
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Figure 14. The state of the Davydov soliton at 40 K.
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Figure 15. The state of the Davydov soliton at 300 K.

in figure 12. From these figures we see clearly that the new soliton is still thermally stable at
300 K, when the structural nonuniformity occurs in the proteins. Therefore we can conclude
that the new soliton is robust against the thermal perturbation and structural nonuniformity of
the protein molecules at the biological temperatures. Thus the new soliton in the improved
model is a real carrier for the bio-energy transport in the protein molecules.

However, the Davydov soliton does not have the above behaviours. For comparison we
listed the results for the Davydov soliton in the cases of same values of physical parameters
obtained by Förner [23] which are shown in figures 13–15 for T = 30, 40 and 300 K,
respectively. From these results we see clearly that the Davydov soliton is not thermally
stable at 300 K; its critical temperature is only about 40 K. Therefore our new model has
considerable differences from the Davydov model.

Why is this? Or, so to speak, why is this new soliton in the improved model more thermally
stable than Davydov’s? The reasons are as follows.

Although equations (3) and (4) can become dynamic equations in the Davydov model,
when χ2 = 0 and

√
2an is replaced by An (in such a case, the normalization condition
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of the Davydov wavefunction becomes
∑

n |An(t)|2 = 2
∑

n |an(t)|2 = 2, at present; this
again shows clearly that the new wavefunction in the improved model contains exactly two
quanta, instead of three quanta [9], as compared with the Davydov wavefunction containing
one quantum), the nonlinear coupling energy, Gp, and binding energy, EBP, determining
the features of the new soliton are greatly increased due to simultaneous changes of the
Hamiltonian; a new interaction between the acoustic vibration of the amino acid and amide-I
was added, and the wavefunction, the quasi-coherent two-quantum state, was used, for the
system in the improved model; these are, respectively, larger by about three and twenty times
than the Davydov soliton’s, as shown by

Gp = 2GD

[
1 + 2

(
χ2

χ1

)
+

(
χ2

χ1

)2]
and

EBP = 16EBD

[
1 + 4

(
χ2

χ1

)
+ 6

(
χ2

χ1

)2

+ 4

(
χ2

χ1

)3

+

(
χ2

χ1

)4]
,

where GD = 4χ2
1 /(1 − s2)W and EBD = −χ4

1 /3J W are the corresponding values for the
Davydov soliton. Thus the stability of the new soliton is greatly enhanced in the improved
model. We concretely calculated these values by using the above parameters for the α-helix
protein molecules [1–17]; the binding energy of the new soliton EBP = 7.8 × 10−21 J is also
greater by about two times than the thermal energy KBT = 4.14 × 10−21 J at 300 K. Then,
the binding energy can completely suppress the destructive effect of the thermal perturbation
on the new soliton. This shows that the new soliton with quasi-coherent two-quantum states
is very robust against the thermal fluctuation. Therefore, the new soliton is thermally stable.
However, the binding energy of the Davydov soliton is EBD = 0.188 × 10−21 J with the same
parameter values, which is smaller by about forty times than the above EBP and the thermal
energy KBT at 300 K. Thus it is easily destroyed by the thermal perturbation. Therefore, the
Davydov soliton is not thermally stable at 300 K which was verified by Forner’s and Lomdahl
et al’s numerical simulation [10, 11] and Cottingham et al’s [13] analytic calculation.

4. Conclusion

We study here the influences of structural disorder and temperature or a heat bath on the states
of a new soliton in an improved model proposed by us [17]. The results obtained show that the
new soliton is very stable against the structural disorder, for example, the random distribution
of the sequence of masses of amino acids and fluctuations of the force constant, dipole–dipole
interaction constant, coupling constant and ground state energy. Meanwhile, the new soliton
is also thermally stable at 300–320 K, its lifetime may reach 300 ps and its critical temperature
is about 320 K. Therefore the new soliton may be a real carrier for bio-energy transport in
protein molecules.
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